The correct option is C 20
Given: x+1x=5
Cubing both sides, we get:
(x+1x)3=53
⇒x3+1x3+3x×1x(x+1x)=125
[ (x+y)3=x3+y3+3xy(x+y)]
⇒x3+1x3+3(x+1x)=125
⇒(x3+1x3)+3×5=125
(∴x+1x=5)
⇒(x3+1x3)=110
Again, cubing both sides, we get:
(x3+1x3)3=(110)3
⇒x9+1x9+3x3×1x3(x3+1x3)=1331000
⇒x9+1x9+3(x3+1x3)=1331000
⇒x9+1x9+3×110=1331000
(∴x3+1x3=110)
⇒x9+1x9=1331000−330=1330670
∴ Sum of digits = 1 + 3 + 3 + 0 + 6 + 7 + 0 = 20
Hence, the correct answer is option (3).