If x−1x=√3, then find the value of x3−1x3.
6√3
x−1x=√3 ......(i)
x3−1x3=(x−1x)(x2+1x2+x×1x)=(x−1x)(x2+1x2+1)..........(ii)
Squaring both sides of (i)
(x−1x)2=(√3)2x2+1x2−2.x.1x=3⇒x2+1x2−2=3⇒x2+1x2=5
Substitute in (ii) to get
x3−1x3=√3(5+1)=6√3