If x=23 and x=−3 are the roots of the quadratic equation ax2+7x+b=0 then find the values of a and b.
If x=23,x=−3 are roots, then the eqn will be
(x−23)(x−(−3)=0
⇒ (x- 23){(x+3)} = 0
⇒ x2 - 23 x + 3x - 2= 0
⇒ 3x2 -2x+9x-6=0
⇒ 3x2 +7x-6=0 is the required eqn.
Compare the eqn with ax²+7x+b=0
We have a=3, and b=−6
Hence, a=3, and b=−6