If x=2sinθ1+cosθ+sinθ, then prove that 1−cosθ+sinθ1+sinθ is also equal to x.
2sinθ1+cosθ+sinθ=x
⇒2sinθ(1−cosθ+sinθ)(1+cosθ+sinθ)(1−cosθ+sinθ)=x[Rationalizingthedenominator]
⇒2sinθ(1−cosθ+sinθ)(1+sinθ)2−cos2θ=x
⇒2sinθ−2sinθcosθ+2sin2θ1+sin2θ+2sinθ−cos2θ=x
⇒2sinθ(1+cosθ−sinθ)2sin2θ+2sinθ=x
⇒2sinθ(1+cosθ−sinθ)2sinθ(1+sinθ)=x
⇒1+cosθ−sinθ1+sinθ=x
[Taking 2sinθ common form numerator and denominator]Hence Proved.