wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=2sinθ1+cosθ+sinθ, then prove that 1cosθ+sinθ1+sinθ is also equal to x.

Open in App
Solution

2sinθ1+cosθ+sinθ=x

2sinθ(1cosθ+sinθ)(1+cosθ+sinθ)(1cosθ+sinθ)=x[Rationalizingthedenominator]

2sinθ(1cosθ+sinθ)(1+sinθ)2cos2θ=x

2sinθ2sinθcosθ+2sin2θ1+sin2θ+2sinθcos2θ=x

2sinθ(1+cosθsinθ)2sin2θ+2sinθ=x

2sinθ(1+cosθsinθ)2sinθ(1+sinθ)=x

1+cosθsinθ1+sinθ=x

[Taking 2sinθ common form numerator and denominator]Hence Proved.


flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon