If x34(log3x)2+log3x−54=√3 then x has
For this value, LHS=334.12+1−(54)=324=312=RHS.
∴x=3 is a solution, which is a integer.
Next, [34(log3x)2+log3x−54]log3x=12
⇒[3(log3x)2+4 log3x−5]log3x−2=0⇒3t3+4t2−5t−2=0,[t=log3x]⇒3t3−3t2+7t2−7t+2t−2=0⇒(3t2+7t+2)(t−1)=0⇒(3t+1)(t+2)(t−1)=0
⇒t=1,−2,−13⇒log3x=1,−2,−13
⇒x=31,3−2,3−13;∴x=3,19,13√3
Thus, there is one +ve integral value, one irrational value, two positive rational values.