If x=4λ1+λ2 and y=2−2λ21+λ2 where λ is a real parameter and x2–xy+y2 lies between [a,b] then (a+b) is
8
Let λ=tanθ
⇒x=2sin2θ and y=2cos2θ [∵sin2θ=2tanθ1+tan2θ and cos2θ=1−tan2θ1+tan2θ]
Given, f=x2−xy+y2
=4−4sin2θcos2θ=4−2sin4θ
We know that −1≤sin4θ≤1
⇒2≥−2sin4θ≥−2
⇒6≥4−2sin4θ≥2
∴f lies between 2 and 6 or fϵ[2,6]
∴a=2 and b=6⇒a+b=8