if X=2√3+22√3−2 and
Y=2√3−22√3+2
Find X2+Y2−XYX2+Y2+XY
195193
if X=2√3+22√3−2 and
Y=2√3−22√3+2
X+Y=2√3+22√3−2+2√3−22√3+2
X+Y=(2√3+2)2+(2√3−2)2(2√3)2−22
X+Y=3+4+42√3+3+4−42√33−2
X+Y=14....................eq(i)
X−Y=2√3+22√3−2−2√3−22√3+2
X−Y=(2√3+2)2−(2√3−2)2(2√3)2−22
X−Y=3+4+42√3−3−4+42√33−2
X−Y=82√3...................eq(ii)
XY=(2√3+22√3−2)(2√3−22√3+2)
XY=(2√3)2−22(2√3)2−22)
XY=1.........................eq(iii)
Now X2+Y2+XYX2+Y2−XY can be written as
(X+Y)2−XY(X−Y)2+XY
Substituting the value we get
142−1(82√3)2−1=196−1192+1=195193