Consider the given value of x and y ,
x=√3+2√3−2,y=√3−2√3+2
We have to find,
x2+y2=(√3+2√3−2)2+(√3−2√3+2)2
=(√3+2)2+(√3−2)2(√3−2)2(√3+2)2=(√3+2)2+(√3−2)2(√3−2)2(√3+2)2
=√32+4+4√3+√32+4−4√3[(√3−2)(√3+2)]2=14[√32−22]2
=14(−1)2=14
This is answer.
if X=2√3+22√3−2 and
Y=2√3−22√3+2
Find X2+Y2−XYX2+Y2+XY
If x=√3+√2√3−√2 and y=√3−√2√3+√2, then find the value of x2+y2?