If x=√3−√2√3+√2 and y=√3+√2√3−√2, then x2+xy+y2=
99
x=√3−√2√3+√2=(√3−√2)(√3−√2)(√3+√2)(√3−√2)
(Rationalising the denominator)
=(√3−√2)2(√3)2−(√2)2=3+2−2×√3×√23−2
=5−2√61=5−2√6
Similarly,
y=√3+√2√3−√2=(√3+√2)(√3+√2)(√3−√2)(√3+√2)
(Rationalising the denominator)
=(√3+√2)2(√3)2−(√2)2=3+2+2√3×√23−2
=5+2√61=5+2√6
∴ x2+y2+xy=(5−2√6)2+(5+2√2)2+(5−2√6)(5+2√6)
=25+24−20√6+25+24+20√6+(5)2−(2√6)2
=49+49+25−24=99