If x=(√3+√2)(√3−√2) and y=√3−√2(√3+√2),find(x2+y2)
98
x=(√3+√2)(√3−√2)×(√3+√2)(√3+√2)=(√3+√2)2(3−2)=(5+2√6)y=(√3−√2)(√3+√2)×(√3−√2)(√3−√2)=√3−√2√3+√2×√3−√2√3−√2=(√3−√2)2(3−2)=(5−2√6)∴x+y=10andxy=(25−24)=1⇒(x+y)2=102⇒x2+y2+2xy=100⇒x2+y2+2×1=100⇒x2+y2=98