wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If xi>0, for 1=i=n, and x1+x2+.....+xn=π then find the greatest value of the sum sinx1+sinx2+.....+sinxn

Open in App
Solution

Since xi>0,1in and x1+x2+x3+.....+xn=π

xiπ for all 1in
f(x)=sinx
f(x)=cosx

f(x)=sinx
in the interval (0,π) and f(x)<0
So graph of f(x)=sinx is concave downward graph
Applying Jensen's inequality for concave downward function we have

f(x1+x2+x3+.....+xnn)f(x1)+f(x2)+f(x3)+....+f(xn)n
Since f(x)=sinx

sin(x1+x2+x3+.....+xnn)sinx1+sinx2+sinx3+....sinxnn

sin(πn)sinx1+sinx2+sinx3+....sinxnn since x1+x2+x3+.....+xn=π

sinx1+sinx2+sinx3+....sinxnnsin(πn)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon