sin4x−cos2xsinx+2sin2x+sinx=0
⇒sinx(sin3x−cos2x+2sinx+1)=0
⇒sinx(sin3x+sin2x+2sinx)=0
⇒sin2x(sin2x+sinx+2)=0
⇒sinx=0 or (sin2x+sinx+2)=0
When sin2x+sinx+2=0
D=1−8=−7<0
So, no real solution.
Therefore,
sinx=0⇒x=nπ
We know that x∈[0,100π],
∴x=0,π,2π,...,100π
Hence, the number of solutions is 101.