If x∈[0,2π] and log2(tanx)+log2(tan2x)=0, then x can be
A
π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
7π6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
5π6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are Bπ6 C7π6 log2(tanx)+log2(tan2x)=0 log function is defined when tanx,tan2x>0 ⇒nπ<x<nπ+π4,n∈Z Now, log2(tanx⋅tan2x)=0 ⇒2tan2x1−tan2x=1 ⇒tan2x=13 ⇒tanx=1√3,−1√3 (rejected) ⇒x=π6,7π6