If x∈(π,2π) and cosx+sinx=12, then the value of tanx is
You are given cos x=1−x22!+x44!−x66!......;
sin x=x−x33!+x55!−x77!......
tan x=x+x33+2.x515......
Find the value of limx→0x cosx+sinxx2+tanx
You are given cosx=1−x22!+x44!−x66!......; sinx=x−x33!+x55!−x77!......; tanx=x+x33+2x515...... Then the value of limx→0xcosx+sinxx2+tanx is