The correct options are
A (1,10]
B [10−9/2,1]
(log10(100x))2+(log10(10x))2+log10x≤14
⇒(log10100+log10x))2+(log10(10)+log10x)2+log10x≤14,[∵loga+logb=log(ab)]
⇒(2+log10x))2+(1+log10x)2+log10x≤14
Substitute log10x=y
⇒(y+2)2+(y+1)2+y≤14
⇒2y2+7y−9≤0
⇒(y−1)(2y+9)≤0
⇒y∈[−92,1]
⇒x∈[10−92,10]