If x is a real number and p,q,rare whole numbers, then prove that xpxqp+q×xrxpr+p×xqxrq+r=1
Prove that xpxqp+q×xrxpr+p×xqxrq+r=1
xpxqp+q×xrxpr+p×xqxrq+r=1=LHS=xpxqp+q×xrxpr+p×xqxrq+r=xp−qp+q×xr−pr+p×xq−rq+r∵am-n=aman=xp2-q2×xr2-p2×xq2-r2∵amn=amn=xp2-q2+r2-p2+q2-r2=x0∵a0=1=1
Hence ,it is proved that xpxqp+q×xrxpr+p×xqxrq+r=1