The correct option is A 2 or 1 according as x is rational or irrational
∵0<cos2(n!πx)≤1If 0<cos2(n!πx)<1Then, f(x)=limn→∞=limn→∞{1+(cos2(n!πx))m}=1+0=1When x is irrational and if cos2(n!πx)=1⇒n!πx=rπ⇒x=rn!=rationalThen, f(x)=limm→∞limn→∞{1+(cos2n!πx)m}=1+1=2Hence, f(x)={2,x is rational1,x is irrational