If x is positive, the sum of infinity of the series 11+x−1−x(1+x)2+(1−x)2(1+x)2−(1−x)3(1+x)4+.... is
12
(a) 12
Let S=1(1+x)−(1−x)(1+x)2+(1−x)2(1+x)3−(1−x)3(1+x)4+....∞
It is clear that it is a G.P. with a=1(1+x) and
r=−(1−x)(1+x)
∴S=a(1−r)
⇒S=1(1+x)[1−(−(1−x)(1+x))]
⇒S=1(1+x)[1+(−1−x1+x)]
⇒S=1(1+x)[(1+x)(1−x)(1+x)]
⇒S=12