If x is positive, the sum of infinity of the series 11+x−1−x(1+x)2+(1−x)2(1+x)2−(1−x)3(1+x)4+.... is
limx→−1(1+x)(1−x2)(1+x3)(1−x4)....(1−x4n)[(1+x)(1−x2)(1+x3)(1+x4).......(1−x2n)]2is equal to: