The correct option is A (−113,13)
Given,x+2(2x2+3x+6)if:y=x+2(2x2+3x+6)⇒2yx2+3yx+6y=x+2⇒2yx2+3yx+6y−x−2=0⇒2yx2+3yx+6y−x−2=0⇒2yx2+(3y−1)x+6y−2=0here,xisrealno.andD≥0⇒(3y−1)2−4(2y)(6y−2)≥0⇒9y2+1−6y−8y(6y−2)≥0⇒9y2+1−6y−48y2+16y)≥0⇒−39y2+10y+1≥0⇒39y2−10y−1≤0⇒39y2−13y+3y−1≤0⇒13y(3y−1)+1(3y−1)≤0⇒(3y−1)(13y+1)≤0∴y=[−113,13]so,thatthecorrectoptionisB.