If x is real, the expression x+22x2+3x+6 takes all value in the interval
(−113,13)
If the given expression be y, then
⇒y=x+22x2+3x+6
⇒2x2y+3xy+6y=x+2
⇒2x2y+(3y−1)x+(6y−2)=0
If y ≠ 0 then Δ ≥ 0 for real x i.e. B2−4AC≥0
⇒(3y−1)2−4× 2y×(6y−2)≥0
⇒9y2−6y+1−48y2+16y≥0
⇒−39y2+10y+1≥0 or (13y+1)(3y−1)≤0
⇒ −113≤y≤13
if y = 0 then x = -2 which is real and this value of y is included in the above range.