If x is real, the maximum value of 3x2+9x+173x2+9x+7 is
f(x)=3x2+9x+173x2+9x+7=3x2+9x+7+103x2+9x+7=1+103x2+9x+7
f′(x)=0 for maximum value
f′(x)=10(6x+9)(3x2+9x+7)26x+9=0x=−32
As x is real so maximum value is f(x)=1+103(−32)2+9(−32)2+7=1+10244−272+7=1+1027−54+284=1+401=41
Answer