If x is real , then value of the expression x2+14x+9x2+2x+3 lies between
x2+14x+9x2+2x+3=y⇒x2+14x+9=x2y+2xy+3y
⇒x2(y−1)+2x(y−7)+(3y−9)=0
Since x is real, ∴4(y−7)2−4(3y−9)(y−1)>0
⇒4(y2+49−14y)−4(3y2+9−12y)>0
⇒4y2+196−56y−12y2−36+48y>0
⇒8y2+8y−160<0 ⇒y2+y−20<0
⇒(y+5)(y−4)<0; ∴ y lies between -5 and 4