If x is so small that x3 and higher powers of x may be neglected, the (1+x)32−(1+12x)3(1−x)12 may be approximated
(1+x)32=1+32x+32×122!x2
(1−x)−12 = 1+12x+12×32×2!×x2
(1+12x)3 = 1+312x+3×22!×x24
⇒(1+x)32−(1+12x)3=x2(38−34)
=−38x2
⇒(1+x)32−(1+12x)3(1−x)12 = −38x2(1−x)−12
= −38x2(1+12x+38x2)
= −38x2−316x3−964x4
= −38x2