If {x} is the least integer greater than or equal to x, then find the value of the following series: {√1}+{√2}+{√3}+{√4}+...+{√99}+{√100}
A
715
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
55
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
157
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
835
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A 715 Let S={√1}+{√2}+{√3}+{√4}+...+{√99}+{√100}⇒S=1+2+2+2+3+3+3+3+3+...+10⇒S=1+3(2)+5(3)+7(4)+9(5)+...+19(10) SinceTn=(2n−1)n=2n2−n∴Sn=∑(2n2−n)=2∑n2−∑n =2n(n+1)(2n+1)6−n(n+1)2=n(n+1)2[23(2n+1)−1]=n(n+1)2[4n+2−33]=n(n+1)(4n−1)6∴S10=10×11×396=715