If (x+iy)3=u+iv, then show that ux+uy=4(x2−y2)
(x+iy)3=u+iv
⇒ x3+i3y3+3x2yi+3xy2i2=u+iv
⇒ (x3−3xy2)+(3x2y−y3)i=u+iv
Comparing both sides
u=x(x2−3y2) and v=y(3x2−y2)
ux+uy=x(x2−3y2)x+y(3x2−y2)y
=x2−3y2+3x2−y2
=4x2−4y2=4(x2−y2)
If (x + iy)3 = u + iv, then show that.