wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x+iy=32+cosθ+isinθ then, show that x2+y2=4x3.

Open in App
Solution

We have x+iy=3(2+cosθ)+isinθ
Rationalizing the denominator, we get
x+iy=3((2+cosθ)+isinθ)((2+cosθ)isinθ)((2+cosθ)isinθ)
x+iy=3((2+cosθ)isinθ)((2+cosθ)2(isinθ)2)
x+iy=6+3cosθ3isinθ4+cos2θ+4cosθ+sin2θ
x+iy=6+3cosθ3isinθ5+4cosθ
x=6+3cosθ5+4cosθ and y=3sinθ5+4cosθ
x2+y2=(6+3cosθ)2+(3sinθ)2(5+4cosθ)2
x2+y2=36+36cosθ+9cos2θ+9sin2θ(5+4cosθ)2
x2+y2=45+36cosθ(5+4cosθ)2
x2+y2=9(5+4cosθ)(5+4cosθ)2
x2+y2=9(5+4cosθ)
x2+y2=9+12cosθ12cosθ(5+4cosθ)
x2+y2=24+12cosθ1512cosθ(5+4cosθ)
x2+y2=4(6+3cosθ)3(5+4cosθ)(5+4cosθ)
x2+y2=4(6+3cosθ)(5+4cosθ)3
x2+y2=4x3
Hence, proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Representation and Trigonometric Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon