We have x+iy=3(2+cosθ)+isinθ
Rationalizing the denominator, we get
x+iy=3((2+cosθ)+isinθ)((2+cosθ)−isinθ)((2+cosθ)−isinθ)
∴x+iy=3((2+cosθ)−isinθ)((2+cosθ)2−(isinθ)2)
∴x+iy=6+3cosθ−3isinθ4+cos2θ+4cosθ+sin2θ
∴x+iy=6+3cosθ−3isinθ5+4cosθ
∴x=6+3cosθ5+4cosθ and y=−3sinθ5+4cosθ
∴x2+y2=(6+3cosθ)2+(3sinθ)2(5+4cosθ)2
∴x2+y2=36+36cosθ+9cos2θ+9sin2θ(5+4cosθ)2
∴x2+y2=45+36cosθ(5+4cosθ)2
∴x2+y2=9(5+4cosθ)(5+4cosθ)2
∴x2+y2=9(5+4cosθ)
∴x2+y2=9+12cosθ−12cosθ(5+4cosθ)
∴x2+y2=24+12cosθ−15−12cosθ(5+4cosθ)
∴x2+y2=4(6+3cosθ)−3(5+4cosθ)(5+4cosθ)
∴x2+y2=4(6+3cosθ)(5+4cosθ)−3
∴x2+y2=4x−3
Hence, proved.