If (x+iy)13=a+ib, then xa+yb =
none of these
(x+iy)13=a+ib
Cubing on both the sides, we get :
x+iy=(a+ib)3⇒ x+iy=a3+(ib)3+3a2bi+3a(ib)2⇒ x+iy=a3+i3b3+3a2ib+3ai2b2⇒ x+iy=a3−ib3+3a2ib−3ab2 (∵ i2=−1,i3=−i)⇒ x+iy=a3−3ab2+i(−b3+3a2b)∴ x=a3−3ab2 and y=3a2b−b3or, xa=a2−3b2 and yb=3a2−b2⇒ xa+yb=a2−3b2+3a2−b2⇒ xa+yb=4a2−4b2