wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=(cosθ+logtanθ) and y=sinθ,Find the value of dydx at θ=π4

Open in App
Solution

Given y=sinθ and x=cosθ+tanθ

Since,
dydx=dydθ×dθdx=dydθdxdθ...........(i)

Now,
y=sinθ

dydθ=cosθ........(ii)

x=cosθ+logtanθ

dxdθ=sinθ+sec2θtanθ=

Hence,
dydx=cosθsinθ+sec2θtanθ

dydx|x=π4=1/21/2+21=1221


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon