wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x lies in the first quadrant and cos x=817, then prove that:
cos π6+x+cos π4-x+cos 2π3-x=3-12+122317

Open in App
Solution

Given: 0<x<π2Now, sin x = 1-cos2x = 1-64289=1517LHS = cosπ6+x +cosπ4-x+cos2π3-x = cos(30+x) +cos(45-x)+cos(120-x) =cos 30° cos x -sin30° sin x +cos 45° cos x+sin 45° sin x + cos120° cos x+sin120° sin x Using formulas of cos(A+B) and cos(A-B) = cos x(cos 30°+cos 45°+cos120) +sin x(-sin 30° +sin 45° +sin 120°) = 81732+12-12 +1517-12+12+32 =8173-12+12+15173-12+12 =23173-12+12 = RHSHence proved.

flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon