wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=log(1+t2),y=ttan1t, show that dydx=ex12.

Open in App
Solution

x=log(1+t2),y=ttan1t
To show dydx=ex12
x=log(1+t2)
dxdt=1(1+t2)(2t)
dxdt=2t1+t2
y = t-tan t
dydt=111+t2
dydt=1+t211+t2
dydt=t21+t2
dydx=t21+t22t1+t2
dydx=t22t ______ (1)
Now x=log(1+t2)
ex=(1+t2)
t2=ex1
t=ex1
Put in (1)
dydx=ex12ex1dydx=ex12
Hence proved

1177676_1291976_ans_ff566133ab6843f59e89cad941e77cf7.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon