If xm⋅yn=(x+y)m+n, then which of the following is/are true :
A
dydx=yx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
dydx=−yx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
d2ydx2=x2+y2x2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
d2ydx2=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dd2ydx2=0 Given xm⋅yn=(x+y)m+n
Applying ln both the sides mln(x)+nln(y)=(m+n)ln(x+y)
Differentiating w.r.t x ⇒mx+nyy′=m+nx+y(1+y′) ⇒y′(ny−m+nx+y)=m+nx+y−mx ⇒y′(nx−my)y(x+y)=(nx−my)x(x+y) ⇒y′=yx⋯(i)
Differenting w.r.t x ⇒y′′=xy′−yx2=x(yx)−yx2=0 from (i) ∴y′′=0