The correct option is
A yxxmyn=(x+y)m+n
Taking log both sides
log(xmyn)=log(x+y)m+n
or, mlogx+nlogy=(m+n)log(x+y)
Differentiating both sides w.r.t. x-
m1x+n1ydydx=(m+n)1(x+y)(1+dydx)
or, mn+nydydx=m+nx+y+m+nx+ydydx
or, dydx(ny−m+nx+y)=m+nx+y−mx
or, dydx[nx+ny−my−ny(x+y).y]=mx+nx−mx−myx(x+y)
or, dydx[nx−my(x+y)y]=nx−my(x+y)x
or, dydx1y=1x
or, dydx=yx .........(1)
Again differentiating both sides wrt x-
d2ydx2=xdydx−y.1x2
or, d2ydx2=xyx−yx2 [Using (1)]
or, d2ydx2=y−yx2
or, d2ydx2=0.