The correct option is B yx
We have xmyn=(x+y)m+n.
Taking log on both sides, we get
mlogx+nlogy=(m+n)log(x+y)
Differentiating both sides w.r.t. x, we get
m1x+n1ydydx=m+nx+yddx(x+y)
or (mx+ny)dydx=m+nx+y(1+dydx)
or {ny−m+nx+y}dydx=m+nx+y−mx
or {nx+ny−my−nyy(x+y)}dydx={mx+nx−mx−my(x+y)x}
or nx−myy(x+y)dydx=nx−my(x+y)x
or dydx=yx