wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If Xm.Yn=(X+Y)m+n then prove that dydx=yx

Open in App
Solution


xmyn=(x+y)m+ntakelogbothsideslog(xmyn)=log(x+y)m+nlogxm+logyn=(m+n)log(x+y)mlogx+nlogy=(m+n)log(x+y)nowdifferentiatebothsidesw.r.t"x"m(dlogxdx)+n(dlogydx)=(m+n)(dlog(x+y)dx)(mx)+n(1y)×(dydx)=(m+n)×(1(x+y))(1+(dydx))(mx)+(ny)(dydx)=(m+nx+y)+(m+nx+y)(dydx)

[(ny)((m+nx+y))](dydx)=[((m+nx+y))(mx)](dydx)=(((m+n)xm(x+y)(x+y)x)(n(x+y)y(m+n)y(x+y)))=(yx)(mx+nxmxmynx+nymyny)=(yx)(nxmynxmy)=(yx)


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon