xmyn=(x+y)m+ntakelogbothsideslog(xmyn)=log(x+y)m+nlogxm+logyn=(m+n)log(x+y)mlogx+nlogy=(m+n)log(x+y)nowdifferentiatebothsidesw.r.t"x"m(dlogxdx)+n(dlogydx)=(m+n)(dlog(x+y)dx)(mx)+n(1y)×(dydx)=(m+n)×(1(x+y))(1+(dydx))(mx)+(ny)(dydx)=(m+nx+y)+(m+nx+y)(dydx)
[(ny)−((m+nx+y))](dydx)=[((m+nx+y))−(mx)](dydx)=(((m+n)x−m(x+y)(x+y)x)(n(x+y)−y(m+n)y(x+y)))=(yx)(mx+nx−mx−mynx+ny−my−ny)=(yx)(nx−mynx−my)=(yx)