If x=logba, y=logcb, z=logac, then xyz is
0
1
2
4
Explanation for the correct answer:
Using the property of logarithms logmn=lognlogm we can write x,y,z as
x=logba=logalogb...(i)
y=logcb=logblogc...(ii)
z=logac=logcloga...(iii)
Multiplying (i),(ii),(iii) we get,
xyz=logalogb×logblogc×logcloga
⇒xyz=1
Hence, for the given values of x,y,z , xyz is 1,
Hence, option (B) is the correct answer.
If x=logba, y=logcb,z=logac, then xyz is
If ax=b,by=c and cz=a then xyz=1