If X=nπ−tan−13 is a solution of the equation 12tan2x+√10cosx+1=0 if
A
n is an any integer
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
n is an odd integer
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
n is a positive integer
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
n∈2M,M∈l
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cn is an odd integer 12tan2x+√10cosx+1=0 ⇒12tan(2nπ−2tan−13)+√10cos(nπ−tan−13)+1=0 Case 1) if n is even −12tan(2tan−13)+√10cos(tan−13)+1=0 ⇒−12(−34)+√10(1√10)+1=0 ⇒+9+10+1=0⇒20≠0 Case 2) If n is odd −12tan(2tan−13)+√10−cos(tan−13)+1=0 ⇒−12(−34)−√10(1√10)+1=0 ⇒+9−10+1=0