x=ω−ω2−2 ⇒x=ω+(ω+1)−2=2ω−1 (x+1)3=(2ω)3 ⇒x3+3x2+3x−7=0 Now, x4+3x3+2x2−11x−6 =x(x3+3x2+3x−7−x−4)−6 =x(−x−4)−6 =−(x2+4x+6) =−[(x+2)2+2] =−[(2ω+1)2+2] =−[4ω2+4ω+3] =−[4(ω2+ω+1)−1] =1
You are given cosx=1−x22!+x44!−x66!......; sinx=x−x33!+x55!−x77!......; tanx=x+x33+2x515...... Then the value of limx→0xcosx+sinxx2+tanx is