xϕ(x)=x∫5(3t2−2ϕ′(t))dt, x>−2,
Differentiating both side w.r.t.x
ϕ(x)+x⋅ϕ′(x)=3x2−2ϕ′(x)
Let ϕ(x)=y
⇒(x+2)⋅dydx+y=3x2⇒dydx+yx+2=3x2x+2I.F.=e∫1x+2dx=eln(x+2)=(x+2)
So, the solution of differential equation is
y⋅(x+2)=∫(3x2x+2)(x+2)dx+c⇒y(x+2)=x3+c
We know y(0)=4, then
4(0+2)=03+c⇒c=8∴y(x+2)=x3+8
Putting x=2, we get
y(4)=8+8∴y=ϕ(2)=4