If x ∈ (π, 2π) and √1+cosx+√1−cosx√1+cosx−√1−cosx =cot(a+x2), then a is equal to
√1+cosx = √2cos2x2 = √2|cos x2|
And √1−cosx = √2sin2x2 = √2|sinx2|
⇒ √1+cosx+√1−cosx√1+cosx−√1−cosx = |cosx2|+|sinx2||cosx2|−|sinx2|
= −cos(x2)+sin(x2)−cos(x2)−sin(x2)
= 1−tanx21+tanx2 = tan( π4 - x2)
= cot( π2 - ( x4 + x2))
= cot ( π4 + x2)
∴ a = π4