If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that :
x2+y2+z2=r2
x =r cos A cos B => x2=r2cos2Acos2B
y = r cos A sin B =>y2=r2cos2Asin2B
z = r sin A => z2=r2sin2A
=>x2+y2+z2=r2cos2Acos2B+r2cos2Asin2B+r2sin2A=r2(cos2A(cos2B+sin2B)+sin2A)=r2(sin2A+cos2A)=r2