1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Euler's Representation
If x=r.cosθ...
Question
If
x
=
r
.
cos
θ
.
cos
ϕ
,
y
=
r
.
cos
θ
.
sin
ϕ
,
z
=
r
.
sin
θ
, show that
x
2
+
y
2
+
z
2
=
r
2
Open in App
Solution
x
=
r
c
o
s
θ
c
o
s
ϕ
;
y
=
r
c
o
s
θ
s
i
n
ϕ
;
z
=
r
s
i
n
θ
x
2
+
y
2
+
z
2
=
r
2
.
x
2
=
r
2
c
o
s
2
θ
c
o
s
2
ϕ
y
2
=
r
2
c
o
s
2
θ
s
i
n
2
ϕ
z
2
=
r
2
s
i
n
2
θ
.
r
2
c
o
s
2
θ
c
o
s
2
ϕ
+
r
2
c
o
s
2
θ
s
i
n
2
ϕ
+
r
2
s
i
n
2
θ
=
r
2
r
2
(
c
o
s
2
θ
c
o
s
2
ϕ
+
c
o
s
2
θ
s
i
n
2
ϕ
+
s
i
n
2
θ
)
=
r
2
r
2
[
c
o
s
2
θ
(
s
i
n
2
ϕ
+
c
o
s
2
ϕ
)
+
s
i
n
2
θ
]
=
r
2
r
2
[
c
o
s
2
θ
(
1
)
+
s
i
n
2
θ
]
=
r
2
r
2
(
1
)
=
r
2
∴
r
2
=
r
2
∴
Hence Proved
x
2
+
y
2
+
z
2
=
r
2
Suggest Corrections
0
Similar questions
Q.
If
x
=
r
cos
θ
.
sin
ϕ
,
y
=
sin
θ
.
sin
ϕ
,
z
=
r
cos
ϕ
Prove that
x
2
+
y
2
+
z
2
=
r
2
Q.
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that :
x
2
+
y
2
+
z
2
=
r
2
Q.
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
(a)
x
2
+
y
2
+
z
2
=
r
2
(b)
x
2
+
y
2
-
z
2
=
r
2
(c)
x
2
-
y
2
+
z
2
=
r
2
(d)
z
2
+
y
2
-
x
2
=
r
2