wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=r.cosθ.cosϕ,y=r.cosθ.sinϕ,z=r.sinθ, show that x2+y2+z2=r2

Open in App
Solution

x=rcosθcosϕ;y=rcosθsinϕ;z=rsinθ
x2+y2+z2=r2.
x2=r2cos2θcos2ϕ
y2=r2cos2θsin2ϕ
z2=r2sin2θ.
r2cos2θcos2ϕ+r2cos2θsin2ϕ+r2sin2θ=r2
r2(cos2θcos2ϕ+cos2θsin2ϕ+sin2θ)=r2
r2[cos2θ(sin2ϕ+cos2ϕ)+sin2θ]=r2
r2[cos2θ(1)+sin2θ]=r2
r2(1)=r2
r2=r2
Hence Proved x2+y2+z2=r2

1207048_1283657_ans_42eb5f9ccd0347f1ae7293c54275a1d2.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Euler's Representation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon