1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Trigonometric Identities
If x= r cos...
Question
If
x
=
r
cos
θ
.
sin
ϕ
,
y
=
sin
θ
.
sin
ϕ
,
z
=
r
cos
ϕ
Prove that
x
2
+
y
2
+
z
2
=
r
2
Open in App
Solution
Given,
x
=
r
cos
θ
s
i
n
ϕ
y
=
r
sin
θ
s
i
n
ϕ
z
=
r
c
o
s
ϕ
to prove that
x
2
+
y
2
+
z
2
=
r
2
LHS
=
x
2
+
y
2
+
z
2
putting value of
x
,
y
and
z
⇒
r
2
cos
2
θ
sin
2
ϕ
+
r
2
sin
2
θ
sin
2
ϕ
+
r
2
cos
2
ϕ
⇒
r
2
sin
2
ϕ
(
cos
2
θ
+
sin
2
θ
)
+
r
2
cos
2
ϕ
⇒
r
2
sin
2
ϕ
+
r
2
cos
2
ϕ
⇒
r
2
(
sin
2
ϕ
+
cos
2
ϕ
)
∵
sin
2
x
+
cos
2
x
=
1
⇒
r
2
=
R
H
S
Hence proved
Suggest Corrections
0
Similar questions
Q.
If
x
=
r
.
cos
θ
.
cos
ϕ
,
y
=
r
.
cos
θ
.
sin
ϕ
,
z
=
r
.
sin
θ
, show that
x
2
+
y
2
+
z
2
=
r
2
Q.
If
x
=
r
sin
A
cos
C
,
y
=
r
sin
A
sin
C
and
z
=
r
cos
A
, prove that
r
2
=
x
2
+
y
2
+
z
2
.
Q.
If
x
=
r
sin
α
cos
β
,
y
=
r
sin
α
sin
β
and
z
=
r
cos
α
, prove that
r
2
=
x
2
+
y
2
+
z
2
.
Q.
If
x
=
a
r
sin
θ
cos
ϕ
,
y
=
b
r
sin
θ
sin
φ
,
z
=
c
r
cos
θ
then, prove that
x
2
a
2
+
y
2
b
2
+
z
2
c
2
=
r
2
Q.
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
(a)
x
2
+
y
2
+
z
2
=
r
2
(b)
x
2
+
y
2
-
z
2
=
r
2
(c)
x
2
-
y
2
+
z
2
=
r
2
(d)
z
2
+
y
2
-
x
2
=
r
2