If x=r sin A cos B, y=r sin A sin B andz=r cos A, then prove that:x2+y2+z2=r2
x = r sin A cos B =>x2=r2sin2Acos2B
y = r sin A sin B =>y2=r2sin2Asin2B
z = r cos A => z2=r2cos2A
=>x2+y2+z2=r2sin2Acos2B+r2sin2Asin2B+r2cos2A=r2(sin2A(cos2B+sin2B)+cos2A)=r2(sin2A+cos2A)=r2