The correct option is A x2+y2+z2=r2
Given,
x=rsin αcosβ ...(i)
y=rsin αsinβ ...(ii)
z=rcosα ...(iii)
Squaring and adding (i) and (ii), we get,
x2+y2=r2sin2αcos2β+r2sin2αsin2β=r2sin2α(cos2β+sin2β)=r2sin2α ...(iv)
Now, squaring (iv) and adding it to (iii), we get,
x2+y2+z2=r2sin2α+r2cos2α=r2(sin2α+cos2α)=r2
Hence, correct option is A.