If x=rsinθcosϕ,y=rsinθsinθsinϕ and z=rcosθ, then x2+y2+z2 is independent of
(a) θ,ϕ
(b) r,θ
(c) r,ϕ
(d) $r$
The correct option is (a) (θ,ϕ)
We have:
x=rsinθcosϕ , y=rsinθ and z=rcosθ
Consider x2+y2+z2
=(rsinθcosϕ)2+rsinθ2+rcosθ2
=r2sin2θcos2ϕ+r2sin2θsin2ϕ+r2cos2θ = r^{2} \sin^{2}\theta(\cos^{2}\phi+\sin^{2}\phi)+r^2\cos^{2}\theta=r^{2}\sin^{2}\theta(1)+r^2\cos^{2}\theta [Since,(\cos^{2}\phi+\sin^{2}\phi)=1]= r^{2} (\sin^{2}θ +\cos^{2}θ)= r^2 (1)Therefore,x^{2}+y^{2}+z^{2}isindependentof\thetaand\phi$.
Hence, the correct option is (a).