If x=rsinθcosϕ,y=rsinθsinϕ and z=rcosθ, then x2+y2+z2 is independent of
0,ϕ
0,ϕ
We have: x=rsinθcosϕ,y=rsinθsinϕ and z
=rcosθ,
∴x2+y2+z2
=(rsinθcosϕ)2+(rsinθsinϕ)2+(rcosθ)2
=r2sin2θcosϕ2+r2sin2θsin2ϕ+r2cos2θ
=r2sin62θ(cos2ϕ+sin2ϕ)+r2cos2θ
=r2sin2θ×1+r2cos2θ
=r2sin2θ+r2cos2θ
=r2(sin2θ+cos2θ)
=r2×1
=r2
Thus,x2+y2+z2 is independent of θ and ϕ.