If {x} represents the fractional part of x, then {52008} is
52008
=(52)1008
=(25)1008
=(1+24)1008
=1+100C1.24+100C2(24)2+....+100C100(24)1008
[∵(1+x)n=1+nC1.x+nC2x2+....+nCnxn]
=18+100C1.24+100C2(24)2+....+100C100(24)1008
=18+24(100C1.+100C2(24)+....+100C100(24)99)8
=18+3(100C1.+100C2(24)+....+100C100(24)99)
Since, the value of 100C1.+100C2(24)+....+100C100(24)99 is always an integer.
i.e., fractional part of x is 18.
Hence, Option A is correct.