If x1+y+y1+x=0, then dydx is equal to
11+x2
-11+x2
11-x2
Explanation for the correct option.
Step 1: Simplify the given equation.
x1+y+y1+x=0⇒x1+y=-y1+x⇒x21+y=y21+x⇒x2+x2y=y2+y2x⇒x2-y2=y2x-x2y⇒x2-y2=-xyx-y⇒x-yx+y=-xyx-y⇒x+y=-xy⇒x=-xy-y⇒x=-y(x+1)⇒y=-x1+x
Step 2: Find dydx.
dydx=-1+x1-x11+x2=-1+x-x1+x2=-11+x2
Hence, option B is correct.
Find the area bounded by the curve y=xx,x-axis and the ordinates x=1,x=-1.