wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x satisfies the equation x210dtt2+2tcosα+1x33t3sin2tt2+1dt2=0 , (0<α<π), then the value of x is?

A
2(sinαα)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2(sinαα)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
4(sinαα)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
B 2(sinαα)
C 2(sinαα)
Let,
I1=10dtt2+2tcosα+1I2=33t2sin2tt2+1dt

Now,
I1=10dtt2+2tcosα+1=10dtt2+2tcosα+cos2α+1cos2α=10dt(t+cosα)2+sin2α=1sinα[tan1t+cosαsinα]10[Using 1x2+a2=1atan1xa]=1sinα[tan11+cosαsinα]1sinα[tan1cosαsinα]=1sinα⎢ ⎢tan12cos2α22sinα2cosα2⎥ ⎥1sinα[tan1cosαsinα]=1sinα[tan1cotα2]1sinα[tan1cotα]

Given that, 0<α<π
cotα2=tan(π2α2)andcotα=tan(π2α)

I1=1sinα[tan1tan(π2α2)]1sinα[tan1tan(π2α)]=1sinα[(π2α2)(π2α)]=1sinα[α2]=α2sinα

Now,
I2=33t2sin2tt2+1dt=0[t2sin2tt2+1 is an odd function]


Thus, the given equation reduces to
x2α2sinα2=0x2α2sinα=2x2=4sinααx=±2sinαα

Hence, options (A) and (B) are correct.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon